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Abstract
The trial wavefunctions for few-electron quantum rings are presented to describe the
spin-dependent rotating Wigner molecule states. The wavefunctions are constructed from the
single-particle orbits which contain two variational parameters to describe the shape and size
dependence of electron localization in the ring-like confinement. They can explicitly show the
size dependence of single-particle orbital occupation to give an understanding of the spin rules
of ground states without magnetic fields. They can also correctly describe the spin and angular
momentum transitions in magnetic fields. By examining the von Neumann entropy, it is
demonstrated that the wavefunctions can illustrate the entanglement between electrons in
quantum rings, including the AB oscillations as well as the spin and size dependence of the
entropy. Such trial wavefunctions will be useful in investigating spin-related quantum behaviors
of a few electrons in quantum rings.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The few-electron semiconductor quantum dots [1] have
attracted a great deal of attention due to their theoretical
meaning to strong correlation systems and application potential
in future quantum electronics, spintronics and quantum
information devices. Recent studies have shown that there are
liquid-to-crystal transitions of electronic states in few-electron
quantum dots with the change of dot size or magnetic field.
The energy spectrum [2], correlation [3] and entanglement
have different characters in liquid-like and crystal-like states.
In strong magnetic fields, the ground states in quantum dots
become rotating Wigner molecules (RWMs) [4–6] which are
electronic states with crystal correlations and without any
symmetry breaking.

Benefiting from the developments of manufacturing and
experimental techniques, the studies of quantum dots with the
ring-like geometry, namely quantum rings [7, 8], have been an
increasing topic in low-dimensional physics. Experimentally,
the electrons in the ring can be precisely controlled down
to quite a small number. The topology of the ring makes
the system appropriate to observe the Aharonov–Bohm (AB)

1 Author to whom any correspondence should be addressed.

oscillations [9, 10] with the changes of the magnetic flux.
Theoretically, in one- or quasi-one-dimensional systems,
the Coulomb interaction brings strong correlations between
electrons and leads to non-Fermi liquid behavior [11, 12].
For the quantum rings with a few electrons, both the energy
level structures and the characters of spectroscopies reflect
the correlations between particles and cannot be understood
within a single-particle picture [13]. The idea of rotational and
vibrational states of localized electrons [12] has been proposed
to understand the energy spectrum structures of quantum rings.
When the electron number is small, the exact diagonalization
(ED) of the many-body Hamiltonian with exact interactions
is feasible. It has also provided the evidence of forming
RWMs [14, 15]. In quantum rings, the crystallization is the
result of strong long-range correlation and is much more easy
in both magnetic fields and the field-free condition than that in
quantum dots. The investigations have also revealed that the
spin of the ground state may depend on the shape and size of
the ring [14, 16].

For quantum dots, there have been in-depth studies on
the theory of RWMs. The few-electron rotational–vibrational
states in the Eckart frame have been employed to understand
the magic angular momenta and spin correlations of electron
molecular states in magnetic fields [17, 18]. Yannouleas and
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Landman have investigated a set of trial wavefunctions for
fully polarized RWMs [4] and demonstrated their accuracy by
a numerical method [19]. They also proposed the projection
technique [4, 20] in their work to restore both the total spin
and the angular momentum symmetries for RWMs. In our
previous work [21], we have derived the trial wavefunctions
for four- and five-electron RWMs in quantum dots with a
spin degree of freedom based on those results. Recently, the
analytic four-electron states in quantum dots with spins were
also investigated by Shi et al within the composite fermion
theory, and the composite fermion crystallization [22–24] gives
an understanding of the characteristics of spin correlations in
crystal states in magnetic fields. These analytic functions are
helpful to the study of the particle crystallization and other
strongly correlated phenomena in few-electron systems [25].

Unlike the situation for quantum dots, the research on trial
wavefunctions of RWMs in quantum rings is still quite limited.
In this work, we will introduce a set of wavefunctions to
describe RWMs in quantum rings with spin degree of freedom.
Then, we take the three-electron and four-electron cases as
examples to discuss the applicability of the trial wavefunctions
by the comparison with the ED method. We will demonstrate
that our trial wavefunctions are suitable for describing the
electronic states in quantum rings with appropriate shape and
size. They can give an understanding of the spin transitions
and the spin rules of the ground state with the change of the
ring size, and exhibit correct angular momentum transitions
of RWMs with different spins in magnetic fields. Besides
these, correlation and entanglement are important issues
for understanding the many-body states and quantum phase
transitions, so we also discuss the entanglement characters of
RWMs in quantum rings based on the trial wavefunctions.

The remainder of the paper is organized as follows.
The trial wavefunctions are constructed in section 2, their
size and shape dependence of accuracy, the spin rules
of the ground state without magnetic fields, the angular
momentum transitions in magnetic fields and the entanglement
characteristics of RWMs in quantum rings are discussed in
section 3 followed by a summary in section 4.

2. Construction of trial wavefunctions

In this section, we construct the trial wavefunctions for RWMs
in quantum rings. In order to do so, the localized single-
particle orbit wavefunctions are presented at first and expanded
to a set of eigenfunctions of angular momentum so as to
restore the rotational symmetry of the final few-electron states.
The orbital functions contain two variational parameters which
reflect the degree of localization of electrons in quantum rings
with different shapes and sizes. Then the few-electron trial
wavefunctions with certain total spin S and the z component
Sz can be obtained from a formal Hamiltonian [21].

For a few-electron quantum ring with the parabolic
confinement and the long-range interaction, we introduce the
modified Gaussian functions to describe the localized single-
particle orbit wavefunctions (un-normalized) subjected to a

perpendicular uniform magnetic field:

u(z) = exp

(
− (|z| − |Z j |)2

2λ2
0

)
× exp

(
−|z − Z j |2

2λ2

)

× exp

(
z Z∗

j − z∗Z j

4l2
B

)
, (1)

where z ≡ x −iy = r(cos θ−i sin θ) is the complex coordinate
of the electron, and x, y and (r, θ) are the Cartesian (polar)
coordinates in real space. Z j ≡ X + iY is the complex
coordinate of the center of the Gaussian which can be set to
one of the equilibrium positions of electrons in a circle with
radius equal to the average radius R0 of the quantum ring. The
last factor is the phase factor in symmetric gauge to preserve
the gauge invariance in the magnetic fields. lB = √

h̄c/eB
is the magnetic length. The orbits contain two independent
variational parameters λ and λ0.

With polar coordinates, the normalized orbit function u(z)
can be expressed as

u(r, θ) = 1√
πλλ′ exp

(
− (r − R0)

2

2λ′2

)

× exp

{
r R0

λ2

[
cos (θ − θ j)+ iδ sin (θ − θ j)− 1

]}
, (2)

where we have defined δ = λ2/2l2
B . We also use λ′ instead of

λ0 for brevity, and 1/λ′2 = 1/λ2
0 + 1/λ2. θ j is the azimuth

angle of the center of the Gaussian. It can be seen that, if the
distribution of the orbit in the radial direction is much smaller
than the radius (r ≈ R0), the angle and radial parts of u(r, θ)
can be decoupled, λ/R0 and λ′ mainly describe the degree of
localization of the single-particle orbit function in the angle
and radial directions, respectively.

In order to restore the rotational symmetry of the final
trial wavefunction, we can construct a set of functions ψl with
angular momentum l, whose radial parts are the product of

√
r

and displaced Gaussians, and angle parts are the eigenfunctions
of a particle in a one-dimensional ring

ψl(r, θ) = (F(2))−1/2√r exp

(
− (r − R0)

2

2λ′2

)

× 1√
2π

exp(ilθ), (3)

where we have defined

F(k) =
∫ ∞

0
rk exp

(
− (r − R0)

2

λ′2

)
dr. (4)

The introduction of the term
√

r is to ensure the convergence of
the kinetic energy expectation values of equation (3). Then the
single-particle orbits u(r, θ) in equation (2) can be expanded
to ψl as

u(r, θ) =
∞∑

l=−∞
cl(θ j)ψl(r, θ). (5)

The coefficient cl can be determined numerically. When the
electron is localized nearby to Z j , i.e. r ≈ R0, θ ≈ θ j , cl can
be approximated as

cl(θ j) =
√
λF( 3

2 )√
πλ′ R0(F(2))1/2

exp

(
− λ2

2R2
0

(
l + φ

φ0

)2
)

× exp(−ilθ j), (6)
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where φ = πR2
0 B is the magnetic flux through the circle with

radius R0 and φ0 = hc/e is the quantum of the magnetic flux.
The assumption r ≈ R0 is just the demand of decoupling of
the radial and angular parts of the orbits, and θ ≈ θ j , which
ensures u(r, θ) is well localized in the angular direction, can
be satisfied when λ/R0 is small.

For the ring with N1 spin-up (↑) and N2 spin-down (↓)
electrons (N1 + N2 = N), starting with the single-particle
orbits in equation (1), we can construct C N1

N many-particle
bases |Z↑

j1
, . . . , Z↑

jN1
, Z↓

jN1+1
, . . . , Z↓

jN
〉 with Sz = (N1−N2)/2.

Here we use sign Z j represents the orbits u(z) centered at
Z j . For large and narrow quantum rings, such a set of many-
particle bases is large enough to expand the ground state
and the low-lying excited states, since the electrons are well
localized. Using equation (5), the many-particle bases can also
be expanded as

|Z↑
j1
, . . . , Z↑

jN1
, Z↓

jN1+1
, . . . , Z↓

jN
〉

=
∞∑

l1,l2,...,lN =−∞
cl1(θ j1)cl2(θ j2) . . . clN (θ jN )

× |l↑1 , . . . , l↑N1
, l↓N1+1, . . . , l

↓
N 〉. (7)

where sign l represents ψl . With the projection operator
technique [4], the component with total angular momentum L
can be obtained as

|Z↑
j1
, . . . , Z↑

jN1
, Z↓

jN1+1
, . . . , Z↓

jN
〉L

=
l1+l2+···+lN =L∑

l1<l2<···<lN1
lN1+1<···<lN

det[cl1(θ j1), cl2 (θ j2), . . . , clN1
(θ jN1

)]

× det[clN1+1(θ jN1+1 ), clN1+2(θ jN1+2), . . . , clN (θ jN )]
× |l↑1 , . . . , l↑N1

, l↓N1+1, . . . , l
↓
N 〉. (8)

The Hamiltonian of a few-electron quantum ring in the
perpendicular magnetic fields with parabolic confinement and
exact interaction is

H =
N∑

i=1

(
(P̂i + e �A)2

2m∗
e

+ 1

2
m∗

eω
2
0(ri − R0)

2

)

+
∑
i< j

e2

4πε|�ri − �r j | , (9)

where �A is the vector potential of the magnetic field and
the Zeeman splitting has been ignored. In order to obtain
the many-particle states with certain total spin S analytically,
we first recourse to a Hamiltonian with simplified form.
In the second quantization scheme, the N-localized-electron
Hamiltonian can be written formally as

H =
∑

i

εi a
†
i ai + 1

2

∑
i jkl

Vi jkla
†
i a†

j alak, (10)

where i, j, k, l represent the single-particle orbit functions
in equation (1) and a†

i (ai) is the corresponding creation
(annihilation) operator. If the electrons are strictly localized
in a single-ring geometry, we can assume a simple
interaction form only with formal exchange integrals between
neighbor and next-neighbor electrons, which are respectively

Vi,i±1,i±1,i = v1 and Vi,i±2,i±2,i = v2. Then the eigenstates of
the Hamiltonian of interacting electrons with certain S and Sz

can be obtained easily as the linear combinations of the bases
in equation (7). Recalling the results of angular momentum
projection in equation (8), we will get the states with conserved
angular momenta and spins which can be regarded as the
many-body trial wavefunctions for spin-dependent RWMs in
quantum rings in equation (9).

For example, for the two-electron case with Sz = 0,
assuming that two localized single-particle orbits are centered
at the positions θ j = 0 and π , respectively, we will have two
many-particle bases( |1〉

|2〉
)

=
( |Z↑

1 , Z↓
2 〉

|Z↑
2 , Z↑

1 〉
)

(11)

where Z1 and Z2 represent the orbits centered at θ j = 0
and π , respectively. For the two-electron case, the simplified
Hamiltonian with only the interaction between the two orbits
is

H =
(

0 v1

v1 0

)
. (12)

The total spin S, energy E and corresponding eigenstates are

S = 0, E = v1 : (
√

2/2,
√

2/2)
S = 1, E = −v1 : (

√
2/2,−√

2/2).
(13)

According to equation (6) and equation (8), the
components of the many-particle bases in equation (11) with
angular momentum L are

|1〉L =
l1+l2=L∑

l1<l2

[
2∏

j=1

exp

(
− λ2

2|R0|2
(

l j + φ

φ0

)2
)]

× (−1)l2 |l↑1 , l↓2 〉
|2〉L = (−1)L |1〉L .

(14)

Recalling equation (13), it can be found that the
two-electron variational trial wavefunctions with angular
momentum L is just the component |1〉L , and there are
selection rules between the angular momenta and the spins of
the wavefunctions:

S = 0, L = 2n
S = 1, L = 2n + 1,

(15)

where n is an arbitrary integer.
For the three-electron case with Sz = 0.5, assuming that

the electrons are localized at the vertices of an equilateral
triangle, there are three many-particle bases

( |1〉
|2〉
|3〉

)
=
⎛
⎝ |Z↑

1 , Z↑
2 , Z↓

3 〉
|Z↑

1 , Z↑
3 , Z↓

2 〉
|Z↑

2 , Z↑
3 , Z↓

1 〉

⎞
⎠ , (16)

where Z1, Z2 and Z3 represent three single-particle orbits
centered at the vertices of the triangle. Here only the
interaction v1 between the neighboring electrons still needs to
be taken into account and the simplified Hamiltonian is

H =
(−v1 v1 −v1

v1 −v1 v1

−v1 v1 −v1

)
. (17)
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The eigenvalues and corresponding eigenstates are

S = 0.5, E = 0 : (
√

2/2, 0,
√

2/2)
(
√

6/6,
√

6/3,
√

6/6)
S = 1.5, E = −3v1 : (

√
3/3,−√

3/3,
√

3/3).

(18)

Again, using equations (6) and (8), the components of the
three-electron many-body bases with total angular momentum
L can be obtained and there are still simple relations between
them:

|1〉L =
l1+l2+l3=L∑

l1<l2

[
3∏

j=1

exp

(
− λ2

2|R0|2
(

l j + φ

φ0

)2
)]

× (ei 2π
3 l2 − ei 2π

3 l1 )ei 4π
3 l3 |l↑1 , l↑2 , l↓3 〉

|2〉L = −ei 4π
3 L |1〉L

|3〉L = ei 2π
3 L |1〉L .

(19)

Then it can be found that the formula of three-electron
variational trial wavefunctions with angular momentum L is
just the component |1〉L , and there are also corresponding
selection rules between the angular momenta and the spins of
the wavefunctions:

S = 0.5, L = 3n ± 1
S = 1.5, L = 3n,

(20)

where n is an arbitrary integer.
For the four-electron case, there are six many-particle

bases with Sz = 0. According to equations (6) and (8), the
explicit form of these bases with total angular momentum L
are (up to a constant)

|k〉L =
l1+l2+l3+l4=L∑

l1<l2 ,l3<l4

[
4∏

j=1

exp

(
− λ2

2|R0|2
(

l j + φ

φ0

)2
)]

× (
ikl1 − ikl2

) (
ikl3 − ikl4

)
(−1)(l3+l4)/k |l↑1 , l↑2 , l↓3 , l↓4 〉 (21)

with k = 1 and 2, and

|3〉L = − exp(−i6πL/4)|1〉L

|4〉L = − exp(−i2πL/4)|1〉L

|5〉L = − exp(−i2πL/4)|2〉L

|6〉L = exp(−i4πL/4)|1〉L .

(22)

According to the similar derivation in two-electron and
three-electron cases, it can be found that the four-electron trial
wavefunctions with angular momentum L can be expressed as
the linear combinations of |1〉L and |2〉L by the consideration
of equation (22). We have also done a detailed derivation for
four-electron RWMs in quantum dots in previous work [21];
the derivation process here is similar to that. The final four-
electron wavefunctions and the angular momentum selection
rules for different spin states are

S = 0, L = 4n + 2 : |1〉L + |2〉L

L = 4n : |1〉L

S = 1, L = 4n ± 1 : |1〉L

L = 4n : |2〉L

S = 2, L = 4n + 2 : 2|1〉L − |2〉L .

(23)

It should be mentioned that the trial wavefunctions are also
suitable for the case without magnetic fields although the above
derivations are with full consideration of the field. If B = 0,
i.e. lB ∼ ∞, the phase factor in equation (1) is 1 and it does
not alter the following derivations. Of course, B or φ in all
equations should be taken as zero.

In the following discussions, we will show that the trial
wavefunctions in equations (19) and (23) with λ and λ′,
which minimize the energy, give an accurate description of
the electronic states, especially RWMs in quantum rings with
appropriate size and shape. Also the selection rules between
the spin and total angular momentum of the wavefunction just
describe the angular momentum transitions of the lowest states
with different spins in magnetic fields.

3. Results and discussions

The values of the variational parameters are determined by
minimizing the energy of the wavefunction, so we first
present the formula of the energy expectation value of the
trial wavefunction. Although we only discuss the scenario
without magnetic fields in subsections 3.1 and 3.2, the formula
presented here is with full consideration of the fields.

For the quantum rings in equation (9), in order to calculate
the energy expectation values of the trial wavefunctions,
we can evaluate the kinetic energy 〈ψl |(P̂i + e �A)2|ψl〉 and
confinement energy 〈ψl |(r − R0)

2|ψl〉 of ψl in equation (3)
at first. Using the definition of F(k) in equation (4), the kinetic
energy

〈ψl |(P̂i + e �A)2|ψl〉 = −h̄2〈ψl |∇2|ψl〉
− ieh̄ B〈ψl | d

dθ
|ψl〉 + 1

4
e2 B2〈ψl |r 2|ψl〉

can be calculated with

〈ψl |∇2|ψl〉 =
[

F(4)

λ′4 − 2R0 F(3)

λ′4 + (R2
0 − 3λ′2)F(2)

λ′4

+ 2R0 F(1)

λ′2 +
(

1

4
− l2

)
F(0)

]/
F(2)

〈ψl | d

dθ
|ψl〉 = il

〈ψl |r 2|ψl〉 = F(4)/F(2)

and the confinement energy is

〈ψl |(r − R0)
2|ψl〉 = (

F(4)− 2R0 F(3)+ R2
0 F(2)

)
/F(2).

Having gotten these expressions, we can calculate the single-
particle energy parts of the Hamiltonian equation (9). Then the
interaction energy can be evaluated numerically.

3.1. Shape and size effects on RWMs

Having presented the formula of the trial wavefunctions and
their energy expectation values, we compare their energies and
overlaps with the results of the ED method to demonstrate
the applicability of the wavefunctions. In this subsection,
we mainly focus on the lowest two electronic states of three-
electron and four-electron quantum rings without magnetic

4
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Figure 1. Upper row: the energy expectation values E of the three-electron and four-electron trial wavefunctions as functions of the radius R
and width W of the ring. Middle row: corresponding variational parameters λ/R0 (empty entities) and λ′ (filled entities) of the trial
wavefunctions. Lower row: overlaps of the trial wavefunctions with the results of the ED method. For the three-electron case, the triangle and
square respectively correspond to the states S = 0.5, L = −1 and S = 1.5, L = 0. For the four-electron case, they respectively correspond to
the states with S = 0, L = 0 and S = 1, L = 0. The energies calculated by the ED method are also presented as lines in the upper row.

fields to reveal the meaning of the variational parameters. We
will show that the trial wavefunctions with the variational
parameters λ and λ′ which minimize the expectation value
of energy can describe the few-electron RWMs in quantum
rings with large radius and small width. The discussions with
magnetic fields are left to sections 3.3 and 3.4.

For quantum rings with parabolic confinements, we can
define the width of the ring as W = (2h̄/m∗

eω0)
1
2 . Then the

radius R0 and width W are important structural parameters
which may affect the character of the electronic states in
quantum rings. So we first compare the energies of the trial
wavefunctions and their overlaps with the results of the ED
method for the rings with different structure parameters in
figure 1, where λ and λ′ have been optimized to minimize
the energy expectation values. The triangle and square,
respectively, represent the three-electron (four-electron) states
S = 0.5, L = −1 (S = 0, L = 0) and S = 1.5, L = 0 (S =
1, L = 0). It can be found that, if the width of the ring is kept
unchanged, the trial wavefunctions can give accurate energies
and highly overlap with the ED ones for the rings with larger
radius. The energy differences between the trial wavefunctions
and the ED ones are lower than 1 meV and the overlap can
exceed 93% (90%) for the three-electron (four-electron) rings
with W = 9.73 nm, if R � 30 nm. With the increase of
the radius, the accuracy of the trial wavefunctions increases.
This is because the degree of the localization in the angular
direction increases with the increase of the radius. Then
our trial wavefunctions can accurately describe such crystal-
like states (RWMs). Also the crystallization greatly depends
on the particle number in nanostructures. The smaller the

particle number is, the easier the crystallization is. so it can
be seen in figure 1 that the accuracy of the three-electron trial
wavefunctions is higher than that of the four-electron ones. We
have examined the trial wavefunctions in the two-electron case,
which also reveals the higher accuracy of the wavefunctions.
For example, for the ring with W = 9.73 nm and R � 30 nm,
the overlap of the trial wavefunctions with the ED ones can be
greater than 95%.

With the change of R0, the variational parameters must
also change correspondingly. According to equation (2), it
can be anticipated that the value of λ/R0 must decrease with
the increase of R0 to reflect the increasing localization in the
angular direction. This anticipation has been confirmed by our
calculation, as shown in figure 1. The plot also shows that the
change of λ′ with the change of R0 can be very slight when the
radial confinement is unchanged.

Another situation is keeping the radius unchanged and
changing the width of the ring. In the third and fourth columns
of figure 1 we show the accuracy of the trial wavefunctions
with fixed R = 40 nm. Here we have chosen a large radius
which ensures the localization of electrons in the angular
direction. It can be found in the plot that the overlap can be
greater than 95%(93%) for the three-electron (four-electron)
rings with W � 10 nm. Increasing width means decreasing
confinement in the radial direction. According to equation (2),
the variational parameter λ′ should increase to reflect the
delocalization of the electrons in the radial direction, and
at this time λ/R0 only has a slight increase, as shown in
figures 1(h) and 1(k). The fact that only one corresponding
variational parameter changes when R or W varies just reflects

5
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Figure 2. Overlap between the trial wavefunctions and the ED ones
with different β = W/R0 as a function of the width of the ring for
(a) three-electron and (b) four-electron cases. The lines with ◦,
�,� and � correspond to β = 0.125, 0.25, 0.375 and 0.5,
respectively.

the decoupled nature of the trial wavefunctions in the radial
and angular parts.

Figure 1 also shows that the overlaps of the trial
wavefunctions with the ED ones decrease with the increase
of the width. When the width is quite large, the trial
wavefunctions will again obviously deviate from the ED
results. The failure of the trial wavefunctions in describing the
electronic states in quantum rings with large width is because
the radial and angular parts of the real electronic states cannot
be decoupled any more.

As a whole, the trial wavefunctions are suitable to describe
the crystal-like states in large and narrow rings. Such demand
can be quantified by the ratio β = W/R0 which describes
the shape of the ring. For fixed radius (width), a smaller
β corresponds to a narrower width (larger radius), i.e. more
ring-like geometry. In figure 2 we can see the effect of the
rings’ shape on the applicability of the trial wavefunctions.
For the rings with smaller β , the trial wavefunctions can
highly overlap with the ED results no matter how large the
width is. It is because that, for small β , a ‘large’ width also
corresponds to a large radius, which ensures the decoupling
of the radial and angular parts of the states, as well as the
localization of electrons in the angular direction. With the
increase of β , the overlap becomes worse, especially for the
rings with larger width. For the three-electron case, the trial
wavefunctions can describe the electronic states well for the
ring with β � 0.25 (the overlap can exceed 95%). For

the rings with moderately larger β , as discussed above, the
wavefunctions are only applicable to those with smaller width.
If β > 0.5, the nanostructure is actually disc-like; then the
wavefunctions are not applicable (the overlap is much lower
than 90%). For the four-electron case, the overlap can also be
larger than 93% if β � 0.25.

In figure 2 there is an interesting fact which should be
noticed. For fixed β , smaller width also means smaller radius
which may cause delocalization of electrons in the angular
direction. Then the real electronic state is the liquid-like one
other than the crystal one. As a result, the overlap between the
trial wavefunctions and the ED method may decrease. But in
figure 2 it can be seen that for the three-electron (four-electron)
case, the wavefunctions with β � 0.5(0.25) can still highly
overlap with the ED results even if the width is quite small. It
should be pointed out that such a fact reflects a character of the
trial wavefunctions. In the derivation of the trial wavefunction
equations (19) and (21) for RWMs, we have assumed the
conditions θ ≈ θ j and R ≈ R0 to guarantee the equality in the
expansion equation (5) when the coefficient cl is approximated
by equation (6). These assumptions can be only satisfied when
W and λ/R0 are small enough. For the rings with small radius,
the process of variation with λ which minimizes the energy
of the wavefunction may break the assumption since λ/R0

increases with the decrease of the radius; see the tendency of
λ/R0 in figures 1(b) and (e). Then equations (19) and (21)
no longer describe the crystal-like states. However, small β
and small W still ensure that the radial and angular parts of
the real electronic states are decoupled although the electrons
are delocalized in the angular direction. Then such quasi-
one-dimensional liquid-like states with decoupled radial and
angular parts can also be approximated by wavefunctions with
variational parameters describing these two parts, just like
equations (19) and (21) do, respectively. This fact makes it
possible to discuss the spin rules of the ground state in quantum
rings without magnetic fields based on the trial wavefunctions.

3.2. Spin-related orbital occupations

For three-electron quantum rings, previous studies by the ED
method have revealed that there is a spin transition of the
ground state even without magnetic fields [14]. For fixed
β , with the increase of the width W , i.e. the increase of
the radius R, the spin of the ground state changes from
0.5 to 1.5, which is accompanied by an angular momentum
transition from L = −1 to 0. Similar spin transition also
exists in the one-dimensional rings with three electrons when
increasing the diameter of the ring, but is absent in the
four-electron case [16]. Having investigated the accuracy of
the trial wavefunctions, we discuss the single-particle orbital
occupations in this subsection to understand the spin rules
of the three-electron and four-electron ground states with the
change of size of the ring.

In figures 3(b) and (c) we show two typical single-
particle angular momentum occupations of three-electron trial
wavefunctions with different sizes of the ring. With fixed
β , decreasing width means decreasing radius. We have
seen in figure 1 that λ/R0 increases with the decrease

6
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Figure 3. (a) Critical width Wc of three-electron spin transition as a
function of β. The solid and dotted lines correspond to the results of
trial wavefunctions and the ED method. (b) and (c) The occupations
of the single-particle angular momentum components for the states
S = 0.5, L = −1 and S = 1.5, L = 0 with the size of the ring
corresponding to the positions marked with � and ∇ in (a). The
conditional probability densities of the ground states of the rings with
two sizes are also shown in the insets, where the dot indicates the
position of the fixed electron.

of R0. According to equation (6), for the trial wavefunctions
with larger λ/R0, the coefficients of angular momentum
components decrease more rapidly with the increase of l. It
results in a smaller number of occupied single-particle angular
momentum components. When the radius is small enough,
for each spin state, only one kind of occupation can survive,
see figure 3(b) as an example. It is known that the kinetic
energy and the Coulomb interaction are proportional to 1/R2

and 1/R, respectively. For such a small radius, compared with
the orbital energy, the interaction between electrons can be
almost ignored. Then the spin state with the orbital occupation
which has the lowest orbital energy will be the unique ground
state. As shown in figure 3(b), for the three-electron case,
the state with S = 0.5, L = −1 can have two electrons
with opposite spins occupy the orbit l = 0. So it is the
ground state with smaller radius (width). We present the
conditional probability density (CPD) of the trial wavefunction
S = 0.5, L = −1 in figure 3 to explicitly show the particle
correlation of the ground state with a small R0. The CPD is
the probability density of finding other electrons in position r
when one electron is fixed. It can be found from the CPD that
the trial wavefunction describes a liquid-like state which has no

Figure 4. (a)–(c) The single-particle orbital occupations of the
four-electron trial wavefunctions with S = 0, L = 0 and
S = 1, L = 0 with the increase of the width of the ring and fixed
β = 0.25. (d) The change of the occupations of single-particle
angular momentum orbits l = 0,±1 and ±2 for the two states as
functions of the width of the ring with β = 0.25. The arrows with a,
b and c just indicate the positions corresponding to subfigures (a), (b)
and (c).

long-range correlation when the radius is small, as discussed in
the previous subsection.

With the increase of the width, i.e. the increase of the
radius when β is fixed, decreasing λ/R0 makes the number
of occupied orbits increase, as shown in figure 3(c). In such
situations, the Coulomb interaction becomes important. Then
the spin state with greater average orbital occupation which has
lower interaction will become the ground state. For the three-
electron case it is just the state S = 1.5, L = 0. We also
show its CPD in the inset of figure 3, which demonstrates that
the trial wavefunction describes the crystal-like state when the
radius becomes large.

In figure 3(a), we also plot the critical width Wc as a
function of β where the ground state transition from S = 0.5
to 1.5 occurs. If the width of the ring is larger than the
critical width, the ground state will be the fully polarized state
S = 1.5, L = 0. The solid and dotted lines correspond
to the results of the trial wavefunctions and the ED method,
respectively. It can be seen that the two methods give quite
similar critical widths when β � 0.5, and have an apparent
deviation when β > 0.5. This fact demonstrates again that
our trial wavefunctions can describe the electronic states in
apparent ring-like geometry.

For the four-electron case with quite small width, i.e. small
radius for fixed β , the single-particle orbital occupations of
states S = 1, L = 0 and S = 0, L = 0 are those in
figure 4(a). The state with S = 1 has lower orbital energy,
so it is the unique ground state when the Coulomb interaction
can be ignored. In fact, for a further smaller radius than
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Figure 5. Upper row: energy expectation values E (solid lines) of the trial wavefunctions with different spins for a three-electron (left
column) and four-electron (right column) quantum ring with R = 40 nm and W = 9.73 nm as functions of the magnetic field. The energies of
the lowest states calculated by the ED method are also presented as dashed lines. The black, red and green lines correspond to the states with
total spin from minimum to maximum. Middle row: corresponding parameters λ/R0 (empty entities) and λ′ (filled entities) of the trial
wavefunctions. Lower row: overlaps between the trial wavefunctions and the ED ones. Triangle, square and circle correspond to the states
with total spin from minimum to maximum.

that in figure 4(a), the orbital occupations of the two states
can tend to be uniform, but the state with S = 1 is still the
unique ground state because it has lower exchange interaction
than the state with S = 0. With the increase of the radius,
the energy difference of the two states decreases since the
Coulomb interaction of the state with S = 0 is smaller than
that of the state with S = 1. When the radius becomes
large enough, the orbital occupations of the two states become
almost the same, as shown in figure 4(c). In this case, the
orbital and the Coulomb energies of the two states become
similar. Since the exchange energy becomes very small with
quite large radius where the electrons are well localized, the
energies of the two states are almost degenerate. So from
the analysis of orbital occupation, it can be understood that
there is no spin transition for four-electron quantum rings. In
figure 4(d), we also present the transitions of the occupation
of single-particle angular momentum orbits l = 0,±1 and ±2
for the two states as functions of the width of the ring with
β = 0.25. With the increase of the width, i.e. the increase of
the radius of the ring when β is fixed, the correlation between
electrons also exhibits the transition from the liquid-like to the
crystal-like one, which is similar to the CPDs in figure 3.

The results of the ED method also show that the energies
of four-electron states S = 1, L = 0 and S = 0, L =
0 tend towards being degenerate at large radius, as in the
discussion based on the trial wavefunction above. Also the
energy difference is typically lower than 0.1% of the total
energy. It should be pointed out that the trial wavefunction
may give an incorrect energy sequence for such a small energy
difference. It is due to a tiny difference between the overlaps

of different spin states with the ED ones (for the states S = 1
and 0, the overlaps may have a difference which is typically
0.1%–0.5% for β � 0.25). In any case, the trial wavefunctions
can reveal and give a correct understanding of the tendency of
the degeneration of the two states.

3.3. RWMs in magnetic fields

In previous sections, we have investigated the properties of
the trial wavefunctions without magnetic fields. We will now
discuss the properties of RWMs in magnetic fields based on the
trial wavefunctions in this and the next subsections.

For the simplest two-electron case, previous investiga-
tion [26] with the ED method has revealed the angular momen-
tum and spin transitions of the ground state (S, L) : (0, 0) →
(1,−1) → (0,−2) → (1,−3), etc, which are in accordance
with the selection rule in equation (15). So next we examine
the three-electron and four-electron cases.

In figure 5, we show the energies of the three-electron
and four-electron trial wavefunctions for a quantum ring with
R = 40 nm and W = 9.73 nm with the increase of the
magnetic field. The variational parameters λ and λ′ have
been chosen as the values which minimize the energy of the
corresponding state. In the same plot, we also show the
energies of the lowest states with different spins calculated
by the ED method. Without the Zeeman splitting, there are
continuous angular momentum transitions of the ground states
and the lowest states with different spins form a narrow band.
The angular momenta of the lowest states with different spins
obtained from the ED method are still in accordance with the
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Figure 6. Four-electron entanglement entropy of the lowest states with different S and Sz calculated by (a) the trial wavefunctions and (b) the
ED method as functions of the angular momentum. In the plots, the size of the ring is R = 40 nm, W = 9.73 nm. In order to clearly show the
AB oscillations of the entropies, the entropies of the states with Sz = 0 as a function of the magnetic field are also shown in (c) and (d). The
triangle, square and circle represent the states with S = 0, 1 and 2, respectively.

rules in equations (20) and (23). The energy level sequences of
the lowest states of the trial wavefunctions are the same as the
ED ones. It means that the trial wavefunctions can correctly
describe the angular momentum transitions of different spin
states in magnetic fields.

It can be found in figure 5 that the deviations of the
energy expectation values of the trial wavefunctions from the
ED results are quite small. The energy differences of the two
methods within the whole range of the field are no more than
1 meV. The overlaps of the trial wavefunctions with the ED
results can be greater than 95%(93%) for the three-electron
(four-electron) case. With the increase of the field, the degree
of crystallization of electrons increases. Then the overlap
between our trial wavefunctions and the ED ones will also
increase. In figure 5, the confinement caused by the magnetic
field is weaker than the ring’s parabolic confinement, so the
increase of the overlap is not very notable. Similarly, the
changes of the variational parameters are also very slight. For
the rings with larger width, the increasing magnetic field will
improve the accuracy of the wavefunctions greatly.

It is known that for quantum rings in a strong interaction
regime, the energy scale of spin dynamics is much smaller
than that of the orbital motion, which indicate the spin–
charge separation in the system. Also the spin excitations
can be described by a exchange–interaction term [12]. In
figure 5 and the above discussion, we have seen that the trial
wavefunctions can give the correct energy level sequence and
accurately describe the lowest states with different spins in
the whole range of magnetic fields. And, with the increase
of the magnetic field, along with the angular momentum
transitions, the alternations of energy level sequence just reflect
the spin excitations in quantum rings. So it means that
the trial wavefunctions with different spins describe the low-
lying spin excitations in large and narrow quantum rings.
This can be attributed to the fact that the simplified formal
Hamiltonian, which we adopt to obtain the eigenstates of S,
just contains the exchange interaction between localized orbits,
see equations (12) and (17).

Before ending this section, it is worthwhile to present a
brief discussion of the character of spin correlations of RWMs.
For quantum dots, both the ED method and the analytical
theories have pointed out that the four-electron crystal states
with different spins have specific spin correlations with respect
to the angular momentum [2, 22, 29]. For quantum rings,
if the localized electrons form a single-ring geometry, our
trial wavefunctions can explicitly show the spin correlation
rules, since the components |1〉L and |2〉L respectively exhibit
the ferromagnetic and anti-ferromagnetic correlations between
electrons. And it can be found that the spin correlation rules
are just the same as that in quantum dots. This is because these
spin correlations originate from the rotational symmetry of
RWMs and the ring-like confinement will not affect them. It is
also known that the electrons may form multi-ring geometries
in quantum dots if there are more than five electrons. The
character of spin correlations in those complicated cases is
still an open problem. However, it can be anticipated that the
confinement of quantum rings will greatly affect the formation
of RWMs with multi-ring geometries and, of course, the
corresponding spin correlations.

3.4. Entanglement in quantum rings

The RWMs are states with strong quantum correlations, so
we next investigate the entanglement, i.e. quantum correlation
given by the trial wavefunctions. For an identical-particle
state, it is not convinced how to quantify all the entanglement
properties, but it is indeed demonstrated that the von Neumann
entropy [27, 28] can quantify the entanglement between one
electron and the other parts of the system. Having got a many-
body wavefunction, the entropy can be calculated by S =
− Tr[ρ ln ρ], where ρμ,ν = 〈ψ|a+

μ aν |ψ〉 is the reduced single-
particle density matrix [28]. For identical-particle states, ρ
does not depend on the choice of the electron.

As discussed above, with the change of the magnetic field,
there are angular momentum transitions of the lowest states
with different spins in quantum rings. In figure 6, we show

9



J. Phys.: Condens. Matter 20 (2008) 295202 N Yang et al

the entanglement entropies of these lowest states for a four-
electron quantum ring as functions of the angular momentum.
In the plots, not only the results with Sz = 0 but also those with
Sz = 1 and 2 are presented. It can be seen that both the trial
wavefunction and the ED method show the Sz dependence of
the entropies. The entropies of the states with different Sz but
same S are only approximately different by a certain constant.
In particular, the values for the states with the smallest and
largest Sz are just different by one, as shown in the plots. This
is a character of the spin-dependent RWMs, which also exists
in quantum dots [21].

According to equation (21), it can be found that, if λ/R0

is unchanged, the occupied single-particle angular momentum
orbits in the trial wavefunctions with total angular momentum
L and L ± N can only be different by a translation l j ∼ l j ± 1
when the magnetic flux is changed by ∓φ0. Such states
will have the same entanglement entropy, since their reduced
single-particle density matrices have the same eigenvalues,
and then the same trace. In the previous discussion we have
shown that, in the angular momentum transitions of the lowest
states with different spins, the change of λ is quite small when
the field is not very strong. So there will be Aharonov–
Bohm (AB) oscillation of the entropy in the results of the
trial wavefunctions since the states with angular momenta L
and L ± N can have almost the same entropy. Figure 6(a)
has shown such a conclusion. In figures 6(c) and (d), we
show the entropy oscillations of the lowest states with Sz =
0 with respect to the field other than angular momenta for
clarity. In figure 6(c), the AB oscillations of entropies of
different spin states calculated by the trial wavefunctions are
clear, and there is a tiny increasing tendency for all spin states.
In figure 6(d), it can be found that the results of the ED
method also show AB oscillations of entanglement entropies.
However, with the increase of the field, the increasing tendency
of entropies given by the ED method is more apparent due to
the increasing crystallization. And, with the increase of the
field, the difference between the results of the ED method and
the trial wavefunctions gradually decreases.

It is worthwhile pointing out that the AB oscillation of
entropies can also be expected even if there is only an enclosed
magnetic flux, but no magnetic field on the ring. For the
rings with large radius and small width, the center of mass
and relative angular motion can be decoupled. Previous studies
have demonstrated that the change of the magnetic flux leads
to the angular momentum (rotation of the center-of-mass)
transitions of the lowest states with different spins, but does not
affect the relative-motion parts of the states [30, 31]. Because
the entropy of a state is only decided by its relative-motion part,
there will be entropy oscillations in the angular momentum
transition with the change of flux.

In figure 7, we take the four-electron states with L =
0, S = 0 and S = 1 as examples to show the size dependence
of the entanglement entropies in quantum rings. The sizes
have been restricted in the range where the electronic states
are crystal-like ones. In figure 7(a), it can be seen from both
the results of the trial wavefunctions and the ED method that
the entropies increase if the radius of the ring increases. It
reflects the fact that the quantum correlation increases when

Figure 7. Entanglement entropies of the state S = 0, L = 0 and
S = 1, L = 0 with Sz = 0 calculated by the trial wavefunctions
(triangle and square) and the ED method (solid and dotted lines) as
functions of (a) the radius R of the ring with W = 9.73 nm and
(b) the width W with R = 40 nm.

the degree of crystallization enhances. The scenario is similar
when the width of the ring decreases, see figure 7(b). In
fact, for RWMs, both increasing the radius with fixed width or
decreasing the width with fixed radius makes λ/R0 decrease.
It broadens the single-particle angular momentum occupation
and makes the entropy increase. The entropies given by the
trial wavefunctions are higher than those given by the ED
method, which means that the trial wavefunctions generally
exhibit a higher degree of particle localization than the
ED ones.

4. Summary

To conclude, the trial wavefunctions for spin-dependent
rotating Wigner molecules in few-electron quantum rings
with different shapes and sizes can be constructed from a
set of single-particle orbits with two variational parameters.
The projection operator technique is employed to restore the
rotational symmetry of the wavefunctions. The shape and
size-dependent variational parameters can correctly describe
the localization of orbits in strong ring-like confinement and
ensure that the functions give accurate energies and highly
overlap with the results of the exact diagonalization method,
no matter whether the magnetic field is present or not.

With the change of the ring shape and size, the trial
wavefunctions reveal the transitions of the single-particle
angular momentum components of the low-lying states, which
are reflected in the transition of particle correlation and can
give an understanding of the spin and angular momentum rules
of the ground states without the magnetic fields. In magnetic
fields, the trial wavefunctions correctly show the angular
momentum transitions of the lowest states with different spins.

10



J. Phys.: Condens. Matter 20 (2008) 295202 N Yang et al

The AB oscillation of the entanglement entropy of RWMs in
quantum rings can be understood by inspecting the nature of
the trial wavefunctions with the change of the magnetic flux.
The wavefunctions also reveal the spin and size dependence
of entropy correctly. With the increase of the magnetic field,
the radius or the confinement of the ring, the entanglement
entropies increase. Such trial wavefunctions can be used in
the studies of quantum behaviors of RWMs in quantum rings
and will be helpful in the understanding of few-body physics
in nanostructures.
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